Maximal entropy measures for Viana maps

نویسندگان

  • Alexander Arbieto
  • Carlos Matheus
چکیده

In this note we construct measures of maximal entropy for a certain class of maps with critical points. The main application of our result is the existence of measures of maximal entropy for the so-called Viana maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Higher-dimensional Subshifts of Finite Type, Factor Maps and Measures of Maximal Entropy

We investigate factor maps of higher-dimensional subshifts of finite type. In particular, we are interested in how the number of ergodic measures of maximal entropy behaves under such factor maps. We show that this number is preserved under almost invertible maps, but not in general under finite to one factor maps. One of our tools, which is of independent interest, is a higher-dimensional char...

متن کامل

Ergodic and Bernoulli Properties of Analytic Maps of Complex Projective Space

We examine the measurable ergodic theory of analytic maps F of complex projective space. We focus on two different classes of maps, Ueda maps of Pn, and rational maps of the sphere with parabolic orbifold and Julia set equal to the entire sphere. We construct measures which are invariant, ergodic, weakor strong-mixing, exact, or automorphically Bernoulli with respect to these maps. We discuss t...

متن کامل

Nonhyperbolic Step Skew-products: Entropy Spectrum of Lyapunov Exponents

We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. We derive a multifractal analysis for the topological entropy of the level sets...

متن کامل

A Multifractal Analysis of Gibbs Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions

We establish the complete multifractal formalism for Gibbs measures for confor-mal expanding maps and Markov Moran geometric constructions. Examples include Markov maps of an interval, hyperbolic Julia sets, and conformal toral endomorphisms. This paper describes the multifractal analysis of measures invariant under dynamical systems. The concept of a multifractal analysis was suggested by seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003